The Town of Falmouth is committed to providing its residents with drinking water of the highest quality possible and we constantly strive to improve all facets of our water system. Our goal is to ensure that we will have ample water supplies in the future that are contaminant free. Although we currently comply with federal and state standards for drinking water quality, please review this report carefully: it is intended to increase public awareness of water issues and contains important information about our water system.

Public participation and support are necessary to plan for our long-term needs. Major water issues are usually presented at regular weekly meetings of the Board of Selectman as well as Town Meeting. We encourage you to get involved.

Overview

Municipal water systems face many challenges such as: meeting seasonal water demands, finding new supply sources to keep pace with growth, resource protection, water conservation, environmental protection and ever more stringent regulations for improved water quality. Our sustainability, as it relates to water, is dependent upon our ability to stay abreast of these changing conditions and implement plans for the future. Unfortunately, there is no magic wand that will make the problems go away: sound planning is therefore crucial. Regardless of our future supply conditions, water conservation and prudent supply management will still be our number one priority to ensure the long term availability of our water supplies.

We must work together to reduce the demand on our resources to please our water the following Voluntary Conservation Measures. Restrictions may not be necessary this season if everyone observes the following Voluntary Restrictions:

1. Water outside only on between the hours of 7:00 pm to 7:00 am.
2. Sweep, don’t wash driveways, patios and sidewalks.
3. Use a pistol-grip type hose nozzle.
4. Restaurants - serve water only when requested (Note: it takes 4 - 5 glasses of water to clean that one glass).

Sources Within Falmouth

Locally, our water comes from a “surface water” source at Long Pond (Source #4096000-01S) and three “groundwater sources” located at Mares Pond (Source #4096000-04G), Fresh Pond (Source #4096000-02G) and Coonamessett Pond (Source #4096000-03G). All sources are treated with Potassium Hydroxide to stabilize the pH as well as Chlorine for disinfection. The Coonamessett well also receives treatment with activated carbon to protect against contaminants from a nearby plume of Ethylene Dibromide (EDB). As their names imply, all sources are located adjacent to the ponds they are named after.

We are currently constructing a highly advanced water treatment facility that will treat 2.5 MG of water from the new Crooked Pond Well and the existing Coonamessett Well. The treatment methods are passive in nature and include air-stripping, activated carbon absorption and manganese greensand filtration followed by disinfection and pH adjustment. The resultant water will be of exceptional quality and contaminant free. The facility will become operational in June of this year.

Sources Outside of Falmouth

Falmouth also purchases water from the Upper Cape Regional Water Supply Cooperative (UCRWSC Public Water System #4261024). This system presently provides water to Falmouth, Bourne, Mashpee and Sandwich. The system consists of three groundwater wells #1, #2 and #3 located on the MRM northeast boundaries near the Sandwich town line. Our connection is located on Sandwich Road near the Falmouth gate of the MRM.

Annually, a sanitary survey is completed for the Long Pond Watershed by the Massachusetts Department of Environmental Protection (DEP). This comprehensive inspection evaluates existing conditions and identifies deficiencies to preserve the quality of the supply. In 2003, DEP completed a report under the Source Water Assessment & Protection program (SWAP) that assesses the susceptibility of our water sources to potential contamination by microbiological pathogens and chemicals. The report recommends the Town for its proactive source protection efforts to reduce risks and promote water resource education. All of our water sources are considered highly susceptible (except Mares Pond Well = medium susceptibility) to contamination from a variety of sources such as: fuel spills, fertilizer use, MMR plume migrations and septic systems. Residents can help protect sources by: supporting water source preservation initiatives, properly disposing of hazardous wastes (see collection dates & times at the end of this brochure), maintaining septic systems and limiting pesticide & fertilizer use. The complete SWAP report is available on-line at www.state.ma.us/dep/bwp/dws or at the Utilities Division office. For more information contact Raymond Jack at (508) 548-7611 or Mike Quink (DEP) at (508) 946-2766.

Water Quality Data for community water systems throughout the United States is available at www.waterdata.com.

The Town of Falmouth Public Water System Identification Number is 4096000.

We’ll be happy to answer any questions about the Town of Falmouth water system and our water quality. Call Raymond A. Jack at 508-548-7611.
AN EXPLANATION OF THE WATER-QUALITY DATA TABLE

The table shows the results of our 2004 water-quality analysis. Every regulated contaminant that we detected in the water, even in the most minute traces, is listed here. The table contains the name of each substance, the highest level allowed by regulation (MCL), the ideal goals for public health, (MCLG) the amount detected, the usual sources of such contamination, footnotes explaining our findings, and a key to units of measurement. Understanding definitions of MCL and MCLG is important. The data presented in this report is from the most recent testing done in accordance with regulations.

DEFINITIONS

Maximum Contamination Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contamination Level Goal or MCLG: The level of contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirement that a water system must follow.

Treatment Technique (TT): A required process introduced to reduce the level of a contaminant in drinking water.

Variance and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.

KEY TO TABLE

- **AL:** Action Level
- **MCL:** Maximum Contaminant Level
- **MCLG:** Maximum Contaminant Level Goal
- **MU:** Million fibers per liter
- **NTU:** Nephelometric Turbidity Units
- **nrem/year:** millirems per year (a measure of radiation absorbed by the body)
- **pCi/L:** picocuries per liter (a measure of radioactivity)
- **ppm:** parts per million, or milligrams per liter (mg/l)
- **ppt:** parts per billion, or micrograms per liter (µg/l)
- **ppq:** parts per quadrillion, or picograms per liter
- **TI:** Treatment Technique

WATER-QUALITY DATA TABLE

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>UNIT</th>
<th>MCL</th>
<th>MCLG</th>
<th>DETECTED LEVEL</th>
<th>RANGE</th>
<th>MAJOR SOURCES</th>
<th>VIOLATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>1.5</td>
<td>0.2-1.5</td>
<td>Runoff from fertilizer use; Leaching from Septic tanks, sewage; Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>ppb</td>
<td>AL=15</td>
<td>0</td>
<td>16.0</td>
<td>0-16.0</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
<td>YES</td>
</tr>
<tr>
<td>Copper</td>
<td>ppb</td>
<td>AL=1300</td>
<td>AL=1300</td>
<td>230</td>
<td>0-230</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives</td>
<td>NO</td>
</tr>
<tr>
<td>*Sodium</td>
<td>ppm</td>
<td>None</td>
<td>None</td>
<td>12</td>
<td>9-12</td>
<td>Naturally present in the environment</td>
<td>NO</td>
</tr>
<tr>
<td>*Sulfate</td>
<td>ppm</td>
<td>None</td>
<td>250</td>
<td>9.2</td>
<td>5.4-9.2</td>
<td>Naturally present in the environment</td>
<td>NO</td>
</tr>
<tr>
<td>Microbiological Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliform (percentage of monthly samples)</td>
<td>Samples</td>
<td>≤5%</td>
<td>0</td>
<td>3.3%</td>
<td>0-0.97</td>
<td>Naturally present in the environment Turbidity measures the cloudiness of water. High turbidity means interference with the disinfection process may occur.</td>
<td>NO</td>
</tr>
<tr>
<td>Turbidity (TI) (highest level recorded for year)</td>
<td>NTU</td>
<td>5</td>
<td>0</td>
<td>.97</td>
<td>0-0.97</td>
<td>Naturally present in the environment Turbidity measures the cloudiness of water. High turbidity means interference with the disinfection process may occur.</td>
<td>NO</td>
</tr>
<tr>
<td>Volatile Organic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THMs (Total Trihalomethanes)</td>
<td>ppb</td>
<td>80</td>
<td>0</td>
<td>21.6</td>
<td>0-79.0</td>
<td>By-product of drinking water chlorination.</td>
<td>NO</td>
</tr>
<tr>
<td>HAAs (Halogenated Acids)</td>
<td>ppb</td>
<td>60</td>
<td>0</td>
<td>13.6</td>
<td>0-62.7</td>
<td>By-product of drinking water chlorination.</td>
<td>NO</td>
</tr>
<tr>
<td>*Chloroform</td>
<td>ppb</td>
<td>None</td>
<td>None</td>
<td>3.0</td>
<td>0-3.0</td>
<td>By-product of drinking water chlorination.</td>
<td>NO</td>
</tr>
<tr>
<td>*Bromoform</td>
<td>ppb</td>
<td>None</td>
<td>None</td>
<td>3.0</td>
<td>0-3.0</td>
<td>By-product of drinking water chlorination.</td>
<td>NO</td>
</tr>
<tr>
<td>*Tetrachloroethylene</td>
<td>ppb</td>
<td>None</td>
<td>5</td>
<td>3.6</td>
<td>0-3.6</td>
<td>By-product of drinking water chlorination.</td>
<td>NO</td>
</tr>
</tbody>
</table>

| Miscellaneous Unregulated Contaminants | ppb | None | None | 0.6 | 0-0.5 | Fuel additive. | NO |

These columns show the results of tests on our finished water.

WATER-QUALITY TABLE FOOTNOTES:

1. Sixty samples were taken during each half of 2004 (120 samples total). Eight (8) samples of the most recent sampling (2nd half 2004) exceeded the AL.
2. Sixty samples were taken during each half of 2004 (120 samples total). Zero (0) samples of the most recent sampling (2nd half 2004) exceeded the AL.
3. MTBE detection was at Fresh Pond Well.

* Denotes "unregulated" contaminants for which EPA has not yet established standards. Monitoring is for the purpose of assisting EPA in determining their occurrence in drinking water and whether future regulation is warranted.
EXPLANATION OF VIOLATIONS

<table>
<thead>
<tr>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration:</td>
</tr>
<tr>
<td>Health Effects:</td>
</tr>
<tr>
<td>Action Taken:</td>
</tr>
</tbody>
</table>

UNREGULATED CONTAMINANTS

Testing for Cryptosporidium was performed in 2004 and the results were ND (non-detect). No tests were performed for Radon.

REQUIRED ADDITIONAL HEALTH INFORMATION

In order to ensure that tap water is safe to drink, the Environmental Protection Agency (EPA) and the state Department of Environmental Protection (DEP) prescribe regulations which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

(A) **Microbial Contaminants** - such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

(B) **Inorganic Contaminants** - such as salts and metals, which can be naturally-occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

| C | Pesticides and Herbicides - which may come from a variety of sources such as agriculture, stormwater runoff, and residential uses. |
| (D) | Organic Chemical Contaminants - Including synthetic and volatile organics, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems. |
| **(E) Radioactive Contaminants** - which can be naturally-occurring or be the result of oil and gas production and mining activities. |

Special Educational Statement for Lead: Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing system. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested by a laboratory. Flushing your tap for 30 seconds to 2 minutes before using can reduce lead levels.

Additional information is available from the Safe Drinking Water Hotline (800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than is the general population. Immuno-compromised persons such as those with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

CROSS CONNECTIONS

A Cross-Connection occurs whenever a potable (drinkable) water line is directly or indirectly connected to a non-potable piece of equipment or piping. Examples of non-potable equipment may include fire protection systems, lawn irrigation systems, air conditioning or cooling systems as well as high pressure boilers. The Falmouth Water Department would like you to know that unprotected cross connections can contaminate drinking water in your home and the municipal water mains. Please call if you have any questions.

PUBLIC INFORMATION BULLETIN - HAZARDOUS HOUSEHOLD WASTE DISPOSAL

The proper disposal of hazardous household products is important to keep our water supplies and environment contaminant free. Many items may be disposed of for free on the following dates: Bourne High School, August 20th, Mashpee High School, October 15th, Sandwich High School, April 16th, Falmouth High School, June 18th. The centers are open from 9 a.m. to 1 p.m.

Please call the Falmouth Board of Health at (508) 548-7611 ext. 254 or the Barnstable County Hazardous Materials Hotline at (800) 319-2783 for additional information. DO NOT call the water department.